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38. By symmetry, the volume of a napkin ring obtained by drilling a hole of

radius r through a sphere with radius R is twice the volume obtained by

rotating the area above the x-axis and below the curve y = v/ R? — 22

(the equation of the top half of the cross-section of the sphere), between

x = r and z = R, about the y-axis. This volume is equal to

outer radius R R
2/ 2rrhde =2 - 27r/ xVR?2 —22de =4~ [—% (R - x2)3/2} = 4n(R? - r2)3/2

nner radius r

But by the Pythagorean Theorem, R? — 7% = (% h) 2, so the volume of the napkin ring is %7‘(’ (% h) = %Tl’h?’, which is
independent of both R and r; that is, the amount of wood in a napkin ring of height A is the same regardless of the size of the

sphere used. Note that most of this calculation has been done already, but with more difficulty, in Exercise 6.2.52.
Another solution: The height of the missing cap is the radius of the sphere minus half the height of the cut-out cylinder, that is,

R — 1h. Using Exercise 6.2.33,

V;lapkin ring = V;phcrc - ‘/cylindcr - 2‘/cap = %T"RB - 7TT2h -2 (R - lh)2 [3R - (R - lh)] = %th

s
3

6.4 ArcLength

Ly=220-5 = L=[° /T+dy/de)?de= [ /T+(2)2de=+5[3-(-1)] =45

The arc length can be calculated using the distance formula, since the curve is a line segment, so

L = [distance from (—1,—7) to (3,1)] = /3= (=12 +[1 — (-7)]2 = v80 =45

2 2
2. (a) x = cost,y =sint, 0 <t < 2m. (%) + (%) = (—sint)? + (cost)?® = sin®t + cos? t = 1. So by formula (1),
L= fo% V1dt = [t]?r = 27, as expected.
. dx ? dy ? 2 . 2 2 .2
(b) x =sin2t, y = cos2t,0 < t < 2m. T + o = (2cos2t)” + (—2sin2t)” = 4 cos” 2t + 4sin” 2t = 4.

L={ 027r Vadt =2 [t ] iﬁ = 2(27) = 4. The discrepancy results from the fact that the unit circle is traversed twice

with this parametrization.

3.y=sine = dy/dv=cosz = 1+ (dy/dx)®=1+cos’x.SoL = [ +/1+ cos?xdx ~ 3.8202.

8z =122y = pdafdy=2y =2 =l #(dz/dy)d = L4(2y —12)% 80 L= [Fx/1 + (2y=2)2dy = 2:9579;
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x=t+cost, y=t—sint, 0 <t <27 dx/dt=1-sintanddy/dt =1— cost,so

(

Thus, L = [V \/(da/dt)2 + (dy/dt)? dt = [2™ /3 — 2sint — 2cost dt ~ 10.0367.

U

f)Q + (%)2 = (1 —sint)® + (1 —cost)® = (1 — 2sint +sin®t) + (1 — 2cost + cos’t) = 3 — 2sint — 2 cost.

U

d

d
.x=tcost,y="tsint,0 <t < 2. d_stc = t(—sint) + cost - 1and & =t-cost+sint-1,so

dt

dz\*  [dy\°
(d—f> + (d_ztl> = (t2 sin?t — 2tsintcost + coth) + (t2 cos?t 4+ 2tsintcost + sin2t)

= t* (sin®t + cos®t) + cos’t + sin’t = ¢* + 1

27 dx 2 dy 2 2w
Thus, L = / (E) + (-) dt = V2 + 1dt ~ 21.2563.
0 0

dt

Lx=1+3t% y=4+2t3 0<t<1. dr/dt =6tanddy/dt = 6t*, so (dx/dt)* + (dy/dt)* = 36t + 36t*

1 1 2
Thus, L :/ \/36t2+36t4dt:/ 6t \/1+t2dt:6/ Vu (3du)  [u=1+ 1% du = 2tdt]
0 0 1

= 3[§u3/2r —2(2%2 - 1) =2(2v2— 1)

1

=4 +4)3 y>0 = y=2x+4)*? = dy/de=3(x+4)"?* =

1+ (dy/dx)* =1+ 9(z + 4) = 9z + 37. So

5512
= [ ) = 3
37

=

2
L:/ 9z + 37 dw [“:9”37’
0

du = 9dx

2 [u3/2}55 _ %(55\/5—737\/3_7).

37

2
o=yt = 14 (defdy)’ =1+ (3912) =1+ 3y,

1 13/4
L:/ ,/Hgydy:/ Va(ddu) [u=1+ 2y du=2dy]
0 1

42 [u3/2}13/4—i(13‘/ﬁ—1> _ 13138
=9°3 L T 8 = 27 -
. dy 1—-22 1 2—-2z 11—z
y = +Vx — 22+ sin 1(\/5) = = = + = =4/ =
dr 2z —22 2Ve/T—z 2Vz/I—z z
2 B 1
1+(%) :1+1xx:i.Thecurvehasendpoints(O,O)and(1,%),SOL:/O \/gdx:[Q\/E]é:Z
1, 1 11 e 1, 1 1 1, 1 1 1
y=3@ cghe s ysgemg = S et ) T e T T Bt T e

So
2
1

2 1 1 271 1
L= V1 N2dx = = — | dz = — —)d
/1 +y)de / 2x+2m‘ m /1 <2x+2x> *

1, 1 ? 1 1 3 1
= |- =1 =(1+=m2)—(= =21 Zn2
[430 +2nx|]l <+2n> <4+0> 4+2n

547
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12. x = a(cos@ + 0sinf), y = a(sind —Ocosh), 0 <O <7

2 2
(%) + (%) = a®[(—sinf + O cos @ + sin)? + (cos O + Osin — cos )]

= a?6?(cos® 0 + sin® 0) = (ah)?

L=[labdd =a[36°]] = 3ima
13. 21 N r=e —t, y=4e’? —8<t<3
(%) + (%) = (" = 1)+ (261/2)? = e = 26" 1 4 4e'
=e? 42" +1 = (el +1)2
V(e +1)2dt = [ (e +1)dt = [et—l—t]its
-1 21 3 -8 3 -8
b =(e"+3)—(e°=8) =e"—e " +11
S | 1
14, 3 -4 =2’ - —
. h Y 3+4a: - v=s 472 -
11 1 ?
1 /2:1 4 = _ .4 _ — 2 R
S e G R T R T Tl B
3 3
2 2 5 1 2 9 1
— 1\2 — _— = —
L /\/l—i-(y) dx /1 T +4x2 dx /1 <x +4x2> dx
- 7 _ 8 1y _(L_1y_7 1_5
-3 - 3 8 3 4) 8 24

15. 8 x =e'cost, y=-e'sint, 0 <t <.

(‘i—f)Q + (%%)2 = [e'(cost —sint)]? + [e'(sint + cost)]?
= (e)*(cos® t — 2cost sint + sin® t)
+ (e")*(sin®t + 2sint cost + cos? t
-25
e

2.5
= e*(2cos® t + 2sin’ t) = 2e?*
Thus, L = fow V2e2t dt = foﬁ V2etdt =+/2 [et]g =2(e" —1).

16. 8 r=¢e +ely=5-2t0<t<3.

dr/dt = e' — e " and dy/dt = —2, so

(dey? 4 (%)2 =e®—2+e 4= +2+e = (" +e ") and

21
J L= fo )dt = [e—et]ize?’—e —(1-1)=e*—e3
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1. y=we® = dyl/dv=e¢ " —xe "= “(1-2) = 1+ (dy/dz)®=1+e*"(1—2)° Let

=1+ (dy/dz)? = \/T+e2*(1 —2)2 Then L = [ f(z)da. Sincen = 10, Az = 5% = 1. Now

L~ Sy = L;[f(o) +4f(3)+2fQ)+4f(3) +2f(2) +4f(2) +2fB)+4f (%) +2f(4) +4f(2) + f(5)]
~ 5.115840

The value of the integral produced by a calculator is 5.113568 (to six decimal places).

2
1 1 1
Br=y+\y = de/dy=1+—= = 1+(daz/dy)2—1+<1+—> =24+ —+—

24/y 24y Vi o
Let g(y) = /1 + (dz/dy)?. Then L = f1 y) dy. Since n = 10, Ay = 2=+ = . Now

L~ S1o = 2£0[g(1) + 4g(1.1) + 29(1.2) + 4g(1.3) + 29(1.4)
+ 49(1.5) + 29(1.6) + 4g(1.7) + 29(1.8) + 49(1.9) + g(2)] ~ 1.732215,

which is the same value of the integral produced by a calculator to six decimal places.

19. x =sint,y =t> = (dz/dt)® + (dy/dt)® = (cost)® + (2t)® = cos®t +4t* = L= fo% Vcos? t + 42 dt.

. . . 2m —
Using Simpson’s Rule with n = 10, At = ﬁlO 0 = %, and f(t) = \/cos? t + 4t2 dt, we get

L~ S0 = 3557 [£(0) +4f(F) + 2/ (3) + 4F (OF) + 2 (FF) + 4 (7) + 2 (°F)
+AF(F) + 2f(5F) + 4 (5F) + f(2m)]
=~ 40.056222

The value of the integral produced by a calculator is 40.051156 (to six decimal places).

2. v =3t —t*,y = 3t>. dz/dt =3 — 3t*> and dy/dt = 6t, s0

(%)2 + (ﬂ)2 = (3 —3t%)% + (61)* = (3 + 3t%)? 0,9) 1=%3

dt
and the length of the loop is given by
L= ("2 (3+3%)dt =2 > (3+36%)dt = 2[3t + £*]3/°
=2(3V3+3v3) =12V3.

e
o
=

~ =

M. (@) 3
e a
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(b) Let f(x) = y = 2 /4 — x. The polygon with one side is just

3
-

the line segment joining the points (0, f(0)) = (0,0) and

(4, f(4)) = (4,0), and its length L, = 4.

The polygon with two sides joins the points (0, 0),

0 . 4 (2,f(2) = (2,2 \3/5) and (4, 0). Its length

LQ:\/(2—) (2v2-0) +\/ 4-2)2+(0— 2\/")_2\/4+28/3z6.43

Similarly, the inscribed polygon with four sides joins the points (0,0), (1, v/3), (2,2 V/2), (3,3), and (4, 0),
so its length

Li= 1+ (V3 + 1+ (2¥2- 4B + 1+ (3-2¥2) + VIF9~7.50

(c) Using the arc length formula w1th dy =z [% (4 —x)72/3(— 1)} +V4i—x= %, the length of the curve is
-

/,/H dy da:—/\/ 2/3] dz.

(d) According to a calculator, the length of the curve is L ~ 7.7988. The actual value is larger than any of the approximations

in part (b). This is always true, since any approximating straight line between two points on the curve is shorter than the

length of the curve between the two points.

22. (a) Let f(z) =y =2 +sinzwith0 <z < 27.

0 L t 2

(b) The polygon with one side is just the line segment joining the points (0, f(0)) = (0,0) and (27, f(27)) = (27, 27), and

its length is /(27 — 0)2 + (27 — 0)2 = 2/27 ~ 8.9.

The polygon with two sides joins the points (0, 0), (, f(7)) = (7, 7), and

(2, 2m). Its length is

Vr =02+ (7 —-02+/2r—7)2+2r—m)2 =271 +27
=227~ 89

Note from the diagram that the two approximations are the same because the sides

of the two-sided polygon are in fact on the same line, since f(7) = m = 1 f(27).

The four-sided polygon joins the points (0,0), (5, % + 1), (7, ), (3£, 3% —

2172

VEP G4 E o E =1 E + (G 1) (2 4 (51
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(c) Using the arc length formula with dy/dx = 1 + cos z, the length of the curve is

L= [7"\/T+ (1 +cosz)?dz = [>"/2+ 2cosa + cos? x dx

(d) The calculator approximates the integral as 9.5076. The actual length is larger than the approximations in part (b).

r=1t> = dx/dt=3tandy =t' = dy/dt =4t>. So
L= [} VoOT+165dt = [} \/t*(9+ 1682) dt = [, t*\/9 + 16t2 dt.
Now use Formula 22 from the table of integrals to evaluate L.
L:ff(%ufm(%du) [a =3,u=4t, du = 4dt]
= e VR = 5 [£(0+ 207)VIFE — Flnut VT )]
=5{[3-41-5-%In(4+5)] - [0—&1n3]}
=5 [382—-%(2In3)+ % 1n3] [In9 =1n3> =2In3]

=53 -%mn3) =322 - L In3~ 1428

y2:4m,x—iy2 = d:c/dy:%y = 1+(dm/dy) —1—|—iy So
L:f02~/1+iy2dy:f01\/1+u2'2du [u= 1y, dy = 2du]
2:1[u\/1+u2+ln|u+\/1+u2u;:\/§+ln(1+\/§)
y =In(cosz) = y':colsx(—sinx):—tanx = 1+ ()" =1+tan’z =sec’ .
SoL:fO”Mseca:dxg[ln|secx+tanm|] In(v2+41) —In(1+0) =In(v2+1) ~ 0.881.
0
/ 1 N2 1 $2+1
y=lhz = ¢y == = 1+ () =1+ = —- So
x x x

:/ﬁﬁdx:/ﬁ@dxg[mlnll—kx/jﬁ—ﬂ
:(Q—In\/g)—(\/i—ln(l—i—\/i)):2—\/§—|—ln(1+\/§)—ln\/§

V3
)

The prey hits the ground wheny =0 < 180 — —:c =0 < 2°=45-180 = x =/8100 = 90,

since = must be positive. y' = —4—251; = 1+ (y ) =1+ 52 2, so the distance traveled by the prey is

90 4 4 w= 2z
_ 2 _ 2 (45 457
L_/o 1/1+452:c dx—/o \/1+u(2du) |:du:%dx:|

551

Lo luvIT @+ ilm(ut+vIta?)]o=L2VIT+ 4+ VIT)] =45VI7+ L In(4 + VIT) ~ 209.1m
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28y =150 — £(z - 50> = y =-%(x—50) = 1+ (¥)° =1+ 55 (z —50)? so the distance traveled by

the kite is

80 3/2 u = z=(z — 50)
/ \/ +—m—50)2dx— V1+u?(20du) [ 20 ]

202 —5/2 du = 2—10da:

II“:

20[5u vIT + 4 n(u+ vIT2)]%2, = 10[2/ 2 + (34 /2) +3/2 (-3 +/2)]

15 25 3+VI3 |
VI3 +2v29+ 10l (208 ) ~ 1228 1

29. The sine wave has amplitude 1 and period 14, since it goes through two periods in a distance of 28 in., so its equation is

y = 1sin(22z) = sin(Zz). The width w of the flat metal sheet needed to make the panel is the arc length of the sine curve

from x = 0 to x = 28. We set up the integral to evaluate w using the arc length formula with % =7z cos(%x):

[ \/ 14 [£ cos( ) dv =2 [ \/ 14 [Zcos(Zx)] ? dw. This integral would be very difficult to evaluate exactly,

so we use a CAS, and find that L ~ 29.36 inches.

30. x = acos® 6, y = asin® 6.

(%)2 + (%%)2 = (—3acos’ § sinf)? + (3asin’® O cos H)? ‘k
= 942 cos* 0 sin? 0 + 9a? sin* 0 cos? 0 " a *
2 . 2 2 2 .2 2 . 2 2

= 9a° sin® 0 cos® O(cos® 0 + sin® ) = 9a” sin” O cos” 0.

The graph has four-fold symmetry and the curve in the first quadrant corresponds
to 0 < 6 < 7/2. Thus,
=4 fﬂ/2 3asin @ cos 0 df [since a > 0 and sin 6 and cos 6 are positive for 0 < 6 < /2]
—12a[ sin 9] =12a (——0)_6(1
3. x =asinf, y =bcosh, 0 <0 < 2.
(‘é—f)Q + (%)2 = (acosf)? + (—bsin0)? = a” cos® @ + b*sin® § = a*(1 — sin® §) + b* sin” §

2
=a® — (a® = b*) sin®0 = a® — ?sin® 0 = a? (1 — C—2 sin? 9) =a*(1 — e?sin? 6)
a

SoL =14 fow/z \/a2 (1—e€2sin®0) df [bysymmetry] = 4a fﬂ/Q V1 — e2sin? 0 do.

32. By symmetry, the length of the curve in each quadrant is the same, 1.1

so we’ll find the length in the first quadrant and multiply by 4.

Z‘Zk +y2k =1 = y2k -1 332k = y= (1 _Z‘Qk)l/(Qk)

(in the first quadrant), so we use the arc length formula with L1

dy

_ _(1 2k)1/(2k’)71(72kx2k71) _ 71,21@71(1 o l,2k)1/(2k)71
dxr 2k
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The total length is therefore

1 1
Lok = 4/ \/1 + [—a2k=1(1 — 22k)1/ R =1]2 g = 4/ \/1 + 22(2k=1) (1 — g2k)1/k=2 dy
0 0

Now from the graph, we see that as k increases, the “corners” of these fat circles get closer to the points (41, 1) and
(1, F1), and the “edges” of the fat circles approach the lines joining these four points. It seems plausible that as & — oo, the

total length of the fat circle with n = 2k will approach the length of the perimeter of the square with sides of length 2. This is

supported by taking the limit as £ — oo of the equation of the fat circle in the first quadrant: klirn (1- x2k)1/ @k) =1

for 0 < = < 1. So we guess that klim Loy =4-2=28.

33. (a) x = 11cost — 4 cos(11t/2), y = 11sint — 4sin(11¢/2). 15

Notice that 0 < ¢ < 27 does not give the complete curve because

x(0) # x(2m). In fact, we must take ¢ € [0, 47] in order to obtain the

—15 S 15

complete curve, since the first term in each of the parametric equations has

period 27 and the second has period 2 1 /2 = 11 , and the least common \ J
~15

integer multiple of these two numbers is 47.

(b) We use the CAS to find the derivatives dx/dt and dy/dt, and then use Formula 1 to find the arc length. Recent versions

of Maple express the integral f047r V/(dz/dt)? + (dy/dt)? dt as 88E(2+/21), where E(z) is the elliptic integral

V1 — 2t2
/ Vo T dtandiis the i imaginary number y/—

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command
evalf (Int (sqgrt (diff (x,t)"2+diff(y,t)"2),t=0..4*P1i)) ; to estimate the length, and find that the arc

length is approximately 294.03. Derive’s Para_arc length function in the utility file Int apps simplifies the

integral to 11f \/ 4 cost cos 17) —4sint sm(lT) + 5dt.

34. (a) It appears that as ¢ — oo, (z,y) — (3, 3).andast — —oo, (z,y) — (—3,—3). 1

(b) By the Fundamental Theorem of Calculus, dw/dt = cos(%t”) and @

dy/dt = sin(%t?), so by Formula 4, the length of the curve from the origin ~1

1
to the point with parameter value ¢ is @

L= fot (3—2)2 + (g—z)z du = fot \/cosz(%uQ) + sin® (Zu?) du \ J

= [ildu=t [or —tift<0]

We have used u as the dummy variable so as not to confuse it with the upper limit of integration.
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DISCOVERY PROJECT Arc Length Contest

For advice on how to run the contest and a list of student entries, see the article “Arc Length Contest” by Larry Riddle in The
College Mathematics Journal, Volume 29, No. 4, September 1998, pages 314-320.

6.5 Average Value of a Function

1 foe = 72— f: f(z)de = 2 f04(4x —2?)de = 1[22° — 32°] =

(=3
N
—
—
w
|
«|2
~—
|
o
[t
I
N
—~
wl¥
~
I
wloo

2 foe =5 [0 fz)de = —t /7, sindzdr =0 [by Theorem 5.5.6(b)]

b 8 8
3 Gave = fag(m)dx:—Bil N \S/de:%[%x‘”s]l:%(w—l):%

a

4 fue =525 [7 f(@) do = == [7/% sec®(0/2) dO = 2[2tan(0/2)];/* = 2 [2(1) — 0] =

ENES

5. have = rriO foﬂ- cos*z sinx dr = %fl_l u4(—du) [w = cosz, du = —sinz dx]

= %f_ll utdu= 2. 2f01 u* du  [by Theorem 5.5.6(a)] = %[%uﬂ; =2

6. have = 525 fo h(u)du= 5 [2,8—2u) " du =13 [1 s du= 3 [ 2(—3dy) [y=3-2udy=—2du]

1
:—%[ln|y|}5:—i(ln1—ln5):%ln5
1 5 1[1 >
7. (@) foe = 57— (z—3)*dz = 3 [g(x—:?,)?’] (c)
- o2 2 4 (5.4)
_ 1793 _(_1)3] — 1 _
—9[2 (1)] 9(8+1) 1 y=(x—3)
(b) f(C):fave =4 (0_3)2:1 = e w1
c—3=+1 & c=2or4 I ’ :
0 2 3 4 5 &
8. (3) fue = 525 [ Inzde = Lzlna — 2]} [by parts] (c) y
=1[(3In3-3) — (In1—1)] —

=1(Bm3-2)=3m3 -1 74

®) faoe = f(c) & S3In3-1=Inc &

c= /231 o 0 3\/5/6 ~ 191
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@) fave = - ! 0/ (2sinz — sin 2z) dz (c) 3
—YJo
f
= L[—2cosz + § cos 2z .
1 1 s

=x[@+3) - (2+3)] =

() f(¢c) = foe & 2sinc—sin2c=2 & 0 e ' oo
c1 ~ 1.238 or co ~ 2.808
1 [ 2z
= 1
= / — du [u=1+ 22, du = 2z dx] ! 5
Y7s
_L 1Ly 2
B 2 ul, 2\5 5
0 ¢ I 2
2c 2

— Jave T o5 — = =(1 )2

®) flc) = fae < e & be=(14¢%) &
c1 ~ 0.220 or co ~ 1.207

f is continuous on [1, 3], so by the Mean Value Theorem for Integrals there exists a number ¢ in [1, 3] such that

ff’ f(x)dz = f(c)(3—1) = 8= 2f(c); that s, there is a number c such that f(c) = £ = 4.

, , I , o
The requirement is that 50 / f(x)dx = 3. The LHS of this equation is equal to
—YJo

b
%/(2+6x—3x2)dac:%[2x+3x2—x3]g:2—|—3b—b2,sowesolvetheequation2+3b—b2:3 3
0

/(—3)2 —4-1-1
>—-3+1=0 < b:3jE (2)1 :?’jz\/5

. Both roots are valid since they are positive.

Joe = / flo)dum 55— 205
= o - 50220 £(20) +4£(25) + 2f(30) + 4f(35) + 2f(40) + 4f(45) + f(50)]
= 15 [42 4 4(38) 4 2(31) + 4(29) + 2(35) + 4(48) + 60] = 5(694) = 337 ~ 38.6
(a) Vave = ﬁ 012 v(t)dt = I Use the Midpoint Rule with n = 3 and At = = 4 to estimate [.

I~ Mz = 4[v(2) + v(6) + v(10)] = 4[21 + 50 + 66] = 4(137) = 548. Thus, vae ~ 75 (548) = 452 km/h.

(b) Estimating from the graph, v(t) = 452 when ¢ ~ 5.2 s.
Lett = 0 and ¢t = 12 correspond to 9 AM and 9 PM, respectively.

Tave = 755 o~ [60 + 14sin L t] dt = 5[50t — 14 - 2 cos —7rt]

= L[50-12 41412 4 14. 12] :(50+2—,§)°Fm59°F

585
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L —t/50 1 —ey50]30 _ 1 3/5
16, Te — 20 + 75 dt:—[QOt—50-75 /} — —[(600 — 3750e~%/5) — (—3750
75 @M= o et = ¢ e=/%) — (~3750)]
= (4350 — 3750e%/°) = 145 — 125¢3/® ~ 76.4°C
17. p _1 8idm—§/8(x+l)1/2d;1:—[3\/;r+1]8—9—3—6kg/m
. ave 8 o /$+1 2 o 0
2
18.5:%gt2 = t=4/2s/g [sincet>0]. Nowv =ds/dt = gt = g\/25/g = /295 = v>=2gs = s:;}—g.

We see that v can be regarded as a function of ¢ or of s: v = F(t) = gt and v = G(s) = \/2gs. Note that vy = F(T') = ¢T.
! v [E@)?

Displacement can be viewed as a function of t: s = s(t) = 1gt?; also s(t) = %" 2 When t = T, these two
formulas for s(t) imply that
V295(T) = F(T) = vy = gT = 2(5¢T2)/T = 25(T)/T *)
The average of the velocities with respect to time ¢ during the interval [0, T is
Ve = Five = —— / CFwdt= L) — 50)) myFTC] = 2L since s(0) = 0] = for by @]
T-0/, T T 2

But the average of the velocities with respect to displacement s during the corresponding displacement interval

[5(0), s(T)] = [0, s(T)] is

P $(T) R _ V29 [*T )
Vgave = Gave = S(ﬂ——O/O G(S) ds = S(T) /0 298 ds = S(T) /0 S ds
% 2 STy 2 /2 3/2 2 2
=3 3 =3 o] = 3D = o v

19. Vae = £ [JV(t)dt = £ [7 2 [1 — cos(2nt)] dt = & [ [1 — cos(Znt)] dt

1 R 1 R P 2 2 P 2 1 31R P 2 3 .PR2
20. /Ov(r)dr: /0—(R —T)drz—[R’“—gr}o:m(E)Rz(;—m-

PR?
4nl

Since v(r) is decreasing on (0, R], Umax = v(0) = . Thus, Vave = 2 Vmax.

21. Let F(x) = [ f(t) dt for 2 in [a, b]. Then F is continuous on [a, b] and differentiable on (a, b), so by the Mean Value
Theorem there is a number c in (a, b) such that F'(b) — F'(a) = F'(c)(b — a). But F'(z) = f(z) by the Fundamental

Theorem of Calculus. Therefore, ff ft)dt —0= f(c)(b—a).

b c b
2. fuelab] = ﬁ/ (@) dz = ﬁ/ f(a:)dx—l—ﬁ/ () dz

b—a|c—a

¢ b
_c—a[ 1 /f(x)dx}Jrz:Z[bic/ f(x)d.’ll‘:|:%favc[a,c]—f—z—;zfavc[c’b]
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APPLIED PROJECT Where To Sit at the Movies

1. |[VP| =94 zcosa, |PT| =35 — (44 zsina) = 31 — zsina, and T ..
|PB| = (4 + zsina) — 10 = zsina — 6. So using the Pythagorean Theorem,

we have |VT'| = VP]?+|PT]? = 9+ zcosa)? + (31 — zsina)? =a, P \@:}V
VT = IVPI + |PTP =/ P+ ( T e oy

B B i
and |VB|:\/|VP|2+|PB|2:\/(9+xc0sa)2+(xsina—6)2:b. ‘[10’ xslma

Using the Law of Cosines on AV BT, we get 252 = a? + b*> — 2abcosf <

a® +b* — 625
cos = —— & 0 =arccos
2ab

a? + b2 — 625

5ah ) , as required.

2. From the graph of 6, it appears that the value of  which maximizes 6 is

x & 8.25 ft. Assuming that the first row is at z = 0, the row closest to this
value of x is the fourth row, at x = 9 ft, and from the graph, the viewing

angle in this row seems to be about 0.85 radians, or about 49°.

0 . : 60

3. With a CAS, we type in the definition of 6, substitute in the proper values of @ and b in terms of z and o = 20° = § radians,
and then use the differentiation command to find the derivative. We use a numerical rootfinder and find that the root of the
equation df/dx = 0 is x &~ 8.253062, as approximated in Problem 2.

4. From the graph in Problem 2, it seems that the average value of the function on the interval [0, 60] is about 0.6. We can use a
CAS to approximate % 060 0(x) dx ~ 0.625 = 36°. (The calculation is much faster if we reduce the number of digits of

accuracy required.) The minimum value is #(60) ~ 0.38 and, from Problem 2, the maximum value is about 0.85.

6.6 Applications to Physics and Engineering

b % 10 10 9 11" )
1. W = dr = | ———dx =10 —d =142, du=dz] =10|—=| =10(—1 +1) =9ftlb
T ey O R

2. W = ff cos(%mc) dr = %[Sin(%ﬂ'x)]f = %(@ — @) =0Nm=01J.

Interpretation: From z = 1 to x = 2, the force does work equal to | 13/ ?cos(Inz)dr = 2 <1 — @) J in accelerating the

particle and increasing its kinetic energy. From x = % to z = 2, the force opposes the motion of the particle, decreasing its

. . . . . . . . . . o o 3
kinetic energy. This is negative work, equal in magnitude but opposite in sign to the work done fromz = 1to z = 3.

3. The force function is given by F'(z) (in newtons) and the work (in joules) is the area under the curve, given by

[ F(x)de = [} F(z)dz + [} F(z)dz = 3(4)(30) + (4)(30) = 180 J.

4. Work = [}° f(z)de = S5 = B=L[£(0) + 4£(3) + 2£(6) + 4£(9) + 2f(12) + 4f(15) + f(18)]

=1-[9.8+4(9.1) + 2(8.5) + 4(8.0) + 2(7.7) + 4(7.5) + 7.4] = 148 joules
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5. According to Hooke’s Law, the force required to maintain a spring stretched x units beyond its natural length is proportional
to z, that is, f(z) = kx. Here, the amount stretched is 4in. = % ft and the force is 10 Ib. Thus, 10 = k(1) =

k = 301b/ft, and f(x) = 30x. The work done in stretching the spring from its natural length to 6 in. = % ft beyond its natural

length is W = [/? 30z dz = [152” ]1/2 = 12 fi-Ib.

6. According to Hooke’s Law, the force required to maintain a spring stretched « units beyond its natural length is proportional
to x, that is, f(x) = kx. Here, the amount stretched is 30 — 20 = 10 cm = 0.1 m and the force is 25 N. Thus,
25 =k(0.1) = k=250N/m,and f(z) = 250x. The work required to stretch the spring from 20 cm to 25 cm

0.05

[256 —20=5cm = 0.05m] is W = f

250z dv = [1252°] "

= 125(0.0025) = 0.3125 ~ 0.31 J.

0.12
0

7. @) If [ ? ko de = 21, then 2 = [1ka?] """ = $k(0.0144) = 0.0072k and k = = 2200 ~ 277.78 N/m.

0. 0072

Thus, the work needed to stretch the spring from 35 cm to 40 cm is

0.10 2500 1250,.271/10 _ 1250 1 1\ _ 25
f005 z dx [9 ]1/20— 9 (100 400)—QN104J

(b) f(x) = kx,5030 = 220z and z = 25 m = 10.8 cm

1

8. If12 = fol kxdr = [%kxz]o = %k, then k = 24 Ib/ft and the work required is

3/4

S 24z doe = [1227])* =12 & = 2L = 6.75 fi-Ib.

16

9. The distance from 20 cm to 30 cm is 0.1 m, so with f(z) = kz, we get W1 = [ kxda = k [%xz]g'l = k.

0.2
0.1

Now W = [ ke de = k[$2%] ) = k(555 — 555) = 555 k- Thus, Wa = 3W1.

200 200 200
10. Let L be the natural length of the spring in meters. Then

6 = [0  kyde = [1k2?]27F = 1k[(0.12 — L)? — (0.10 — L)?] and

0.10—L 2 0.10—L
0.14- L 0.14—L
10 = [, ) kwde = [$ha®] )", = 3k[(0.14 — L) — (0.12 — L)*].
Simplifying gives us 12 = £(0.0044 — 0.04L) and 20 = k(0.0052 — 0.04L). Subtracting the first equation from the second

gives 8 = 0.0008k, so k£ = 10,000. Now the second equation becomes 20 = 52 — 400L, so L = 4—00 m = 8 cm.

In Exercises 11—18, n is the number of subintervals of length Az, and ] is a sample point in the 4th subinterval [z:;—1, 2;].

11. (a) The portion of the rope from x ft to (z + Ax) ft below the top of the building weighs % Az Ib and must be lifted =] ft,

so its contribution to the total work is %mf Az ft-1b. The total work is

W = lim %xf Az = [*° 1;vdac = [%x2]50 = 2500 = 625 ft-1b

n—oo ;1 0 0
Notice that the exact height of the building does not matter (as long as it is more than 50 ft).
(b) When half the rope is pulled to the top of the building, the work to lift the top half of the rope is

Wy = 25 1xdm—[ x?

% ]25

0o = %5 ft-1b. The bottom half of the rope is lifted 25 ft and the work needed to accomplish

thatis W2 = [, 1 - 25dx = [a: = 825 fi-1b. The total work done in pulling half the rope to the top of the building

isW:W1+W2:%+%:3.625=%75ft-1b.
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12. Assumptions:
1. After lifting, the chain is L-shaped, with 4 m of the chain lying along the ground.
2. The chain slides effortlessly and without friction along the ground while its end is lifted.
3. The weight density of the chain is constant throughout its length and therefore equals (8 kg/m)(9.8 m/s®) = 78.4 N/m.

The part of the chain  m from the lifted end is raised 6 — x m if 0 < x < 6 m, and it is lifted 0 m if z > 6 m.

Thus, the work needed is

W= lim 3 (6—a}) T8.4Az = [(6—2)78.4dx = 78.4[6x — 12?]) = (78.4)(18) = 1411.2J

n—oo ;1

13. The work needed to lift the cable is lim S°7 | 227 Az = [7* 2z dz = [22]]" = 250,000 ft-b. The work needed to lift
the coal is 800 1b - 500 ft = 400,000 ft-1b. Thus, the total work required is 250,000 + 400,000 = 650,000 ft-Ib.

14. The work needed to lift the bucket itselfis 4 1b - 80 ft = 320 ft-1b. At time ¢ (in seconds) the bucket is x] = 2¢ ft above its
original 80 ft depth, but it now holds only (40 — 0.2¢) 1b of water. In terms of distance, the bucket holds [40 — 0.2(%:18;-k )] Ib
of water when it is x; ft above its original 80 ft depth. Moving this amount of water a distance Ax requires

(40 — &) Az ft-Ib of work. Thus, the work needed to lift the water is

W= lim Z (40 — 7)) Az = [3°(40 — Lz)de = [40z — £2?]5" = (3200 — 320) fi-Ib

TLHOO =1

Adding the work of lifting the bucket gives a total of 3200 ft-Ib of work.

15. At a height of z meters (0 < z < 12), the mass of the rope is (0.8 kg/m)(12 — z m) = (9.6 — 0.8x) kg and the mass of the
water is (33 kg/m) (12 — 2 m) = (36 — 3x) kg. The mass of the bucket is 10 kg, so the total mass is

(9.6 — 0.8z) + (36 — 3x) + 10 = (55.6 — 3.8x) kg, and hence, the total force is 9.8(55.6 — 3.8z) N. The work needed to lift

the bucket Az m through the ith subinterval of [0, 12] is 9.8(55.6 — 3.8z} ) A, so the total work is

n 12
W= lim Y 9.8(55.6 — 3.827) A = [;(9.8)(55.6 — 3.82) du = 9.8[55.6x - 1.91;2] = 0.8(393.6) ~ 3857 ]
n—eo =] 0

16. The chain’s weight density is 2121? = 2.5 Ib/ft. The part of the chain x ft below the ceiling (for 5 < 2 < 10) has to be lifted

2(z — 5) ft, so the work needed to lift the ith subinterval of the chain is 2(z} — 5)(2.5 Ax). The total work needed is

W = lim z 2z} —5)(2.5) Az = [[°[2(x — 5)(2.5)]dz =5 [}°(z — 5) dw

’n—)oo 5

=5[42” - 5:1:]5 =5[(50 — 50) — (2 —25)] =5(%) =62.5ft-Ib

17. A “slice” of water Az m thick and lying at a depth of zj m (where 0 < zj < %) has volume (2 x 1 x Axz) m®, a mass of
2000 Az kg, weighs about (9.8)(2000 Az) = 19,600 Ax N, and thus requires about 19,600z; Az J of work for its removal.

SoW = lim Z 19,600z Az = [;/% 19,6002 du = [98002°],/% =

T‘L—?OO

= 24501J.
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18. A horizontal cylindrical slice of water Az ft thick has a volume of 7r*h = 7 - 12? - Az ft® and weighs about
(62.5 Ib/ft®) (1447 Az ft*) = 90007 Az Ib. If the slice lies 2} ft below the edge of the pool (where 1 < z} < 5), then the

work needed to pump it out is about 90007z Ax. Thus,

W = lim Z 90007z} Az = [ 90007z dx = [4500m2?]7 = 4500m(25 — 1) = 108,000 ft-lb

’I’LHOO

19. A rectangular “slice” of water Az m thick and lying 2 m above the bottom has width 2 m and volume 8z Az m®. It weighs

about (9.8 x 1000)(8x Ax) N, and must be lifted (5 — ) m by the pump, so the work needed is about
(9.8 x 10%)(5 — 2)(8z Ax) J. The total work required is
W [2(9.8 x 10%)(5 — )8z dz = (9.8 x 10%) [ (40z — 827) dz = (9.8 x 10%)[202° — 82°]?
= (9.8 x 10%)(180 — 72) = (9.8 x 10%)(108) = 1058.4 x 10% ~ 1.06 x 10° J

20. Let y measure depth (in meters) below the center of the spherical tank, so that y = —3 at the top of the tank and y = —4 at the
spigot. A horizontal disk-shaped “slice” of water Ay m thick and lying at coordinate y has radius /9 — y2 m and volume
ar? Ay = (9 — y?) Ay m®. It weighs about (9.8 x 1000)7(9 — y*) Ay N and must be lifted (y + 4) m by the pump, so the
work needed to pump it out is about (9.8 x 10%)(y + 4)7(9 — y*) Ay J. The total work required is

W= f33(9.8 x 10%)(y + 4)7(9 — y°) dy = (9.8 x 10*)7 fES(Qy —y® +36 —4y?) dy
= (9.8 x 10%)7( fo (9 —y?) dy [by Theorem 5.5.6]
= (78.4 x 103)77[9y - %y?’]o = (78.4 x 10*)7(18) = 1,411,2007 ~ 4.43 x 10°J

21. Let  measure depth (in feet) below the spout at the top of the tank. A horizontal

disk-shaped “slice” of water Az ft thick and lying at coordinate x has radius : :
3(16 — z) ft () and volume 7r°Az = 7+ & (16 — z)* Az ft*. It weighs x[ —‘L/
about (62.5)2% (16 — z)* Az 1b and must be lifted  ft by the pump, so the 8 x "
work needed to pump it out is about (62.5)z 2= (16 — x)* Az ft-Ib. The total
3
work required is (4 From similar tiangles, : il _ %

~ [8 9w 2 _ 9r 8 2
W [5(62.5)2 2 (16 — 2) dx = (62.5) 2% [* 2(256 — 320 + 22) da o i

= (62.5)3% [¥(2562 — 322 + 2°) dx = (62.5) 3% [1282° — 24® + 12%]7 - &8) +25-m
— 3(16 —
— (62.5) 2% (L1264 _ 33 5007 & 1.04 x 107 filb =s6-2)
64 3
22. Let = measure the distance (in feet) above the bottom of the tank. A 12
horizontal “slice” of water Ax ft thick and lying at coordinate = has }6 oo

6
volume 10(2z) Az ft®. It weighs about (62.5)20x Az Ib and must be V

lifted (6 — x) ft by the pump, so the work needed to pump it out is about
(62.5)(6 — x)20z Az ft-1b. The total work required is
W [2(62.5)(6 — 2)20x dz = 1250 [y (62— 22)dz = 1250 32> — %:cﬂg’ = 1250(36).= 45,000 ft-1b.
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If only 4.7 x 10° J of work is done, then only the water above a certain level (call 50

it i) will be pumped out. So we use the same formula as in Exercise 19, except that

the work is fixed, and we are trying to find the lower limit of integration:

0 3
4.7 10° = [7(9.8 x 10*)(5 — z)8z dz = (9.8 x 10*) [202? — ggg?’]i & {
52 x10° ~ 48 = (20-3% — £ -3%) — (20n* — §1%) & —40

2h% — 15h% 4 45 = 0. To find the solution of this equation, we plot 2h> — 15h2 + 45 between h = 0 and h = 3.

We see that the equation is satisfied for A ~ 2.0. So the depth of water remaining in the tank is about 2.0 m.

The only changes needed in the solution for Exercise 20 are: (1) change the lower limit from —3 to 0 and (2) change 1000

to 900.
W [ (9.8 x 900)(y + 4)m(9 — y?) dy = (9.8 x 900) 7 [> (9y — y° + 36 — 4y?) dy

= (9.8 x 900)7 [$y* — Ly* + 36y — §y3]§ = (9.8 x 900)7(92.25) = 813,6457
~ 2.56 x 105 ] [about 58% of the work in Exercise 20]

V= 71'1"23:, so V is a function of x and P can also be regarded as a function of z. If V; = mr?zq and Vo = 7rr2m2, then
T2 xo
W = F(z)dx = / 7’ P(V(z)) dx = / P(V(x))dV(zx) [Let V(z) = nr’z, so dV (z) = mr® dz.]
Ty T
Va

= P(V)dV Dby the Substitution Rule.
|4

160 Ib/in® = 160 - 144 Ib/ft*, 100 in® = $:2% ft*, and 800 in® = 392 fi°.

= PV = (160 - 144) (£2) " = 23,040(25) " &~ 426.5. Therefore, P ~ 426.5V 1 and

1728

800/1728 14 0.4725/54 4 0.4 3
W= / 4265V 14 AV = 426.5| v "] = (426.5)(25)[($2)™" — (3)™*] ~ 1.88 x 10° f-b.
100/1728 25/432
b
(W= / r)dr = / Gm1m2 dr = Gmlmg{ 1} = Gmime (l — 1)
T, a b
(b) By part (a), W = GMm (]—1% - m) where M = mass of the earth in kg, R = radius of the earth in m,
and m = mass of satellite in kg. (Note that 1000 km = 1,000,000 m.) Thus,
1 1
= (6. 10711 (5. 10°4)(1 - ~ 8. 10°
W = (6.67 x 1071)(5.98 x 10*)(1000) X ( s — =555 | & 8:50 x 107
o0 t —
(a)W:/ GMm 4, — dr—hmGMm[ 1} :GMmlim(—1+l>:W—m,
R T t—o00 t—o0 T R t—o0 t f{ ]{

where M = mass of the earth = 5.98 x 10%* kg, m = mass of the satellite = 10° kg,
R = radius of the earth = 6.37 x 10° m, and G = gravitational constant = 6.67 x 10~'* N-m?/kg?.
6.67 x 107" - 5.98 x 10°* - 10°

Thereft k= ~ 6.26 x 10'°J.
erefore, worl 537 % 10° X
GMm P .
(b) From part (a), W = = The initial kinetic energy supplies the needed work,
1 o  GMm 2G M
S0 =g = —— | = yg=4/——

2 R R
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The weight density of water is § = 62.5 Ib/ft>.
(@) P = dd ~ (62.5 Ib/ft*)(3 ft) = 187.5 Ib/ft>
(b) F = PA ~ (187.5 Ib/ft*)(5 ft)(2 ft) = 1875 Ib. (A is the area of the bottom of the tank.)
(c) As in Example 1, the area of the ith strip is 2 (Ax) and the pressure is 6d = dz;. Thus,
F = [6x-2de ~ (62.5)(2) [; vdz = 125[32?]} = 125(5) = 562.5 Ib.
(@) P = pgd = (820 kg/m®)(9.8 m/s*)(1.5 m) = 12,054 Pa ~ 12 kPa
(b) F = PA = (12,054 Pa)(8 m)(4 m) ~ 3.86 x 10° N (A is the area at the bottom of the tank.)

(c) The area of the ith strip is 4(Axz) and the pressure is pgd = pg x;. Thus,

= [° pgz - Adx = (820)(9.8) - 4 [ ° z dw = 32,144 [12?]2* = 16,072 (2) ~ 3.62 x 10* N.

Set up a vertical x-axis as shown. The base of the triangle shown in the figure 6m 1o
has length /32 — ()2, so w; = 2/9 — (2})2, and the area of the ith 3m / 1

rectangular strip is 2 /9 — (z7)2 Az. The ith rectangular strip is (v} — 1) m \ u \\/ |,
below the surface level of the water, so the pressure on the strip is pg(x; — 1). v I

The hydrostatic force on the strip is pg(zj — 1) - 2W Ax and the total X

force on the plate ~ Z pg(xy —1)-24/9 — 2 Az. The total force

=1

F =lim Xn: pg(zi —1)-24/9 — (aF)?2 Ax = 2pgf13(x —1)v9 — 2?2 dx
i=1

3

= 2pgf13x\/9—:r2 dx—2pgf13 VI— 22 dx 2 2pg [—%(9—9: )3/2} 2pg[ V9 — 2?2 —I-%Sin_l(%)}
=290+ 5(8V8)] =2p9[(0+3-5) — (53 VB+ 3sin7'(5))]

= 2V2pg — Fpg+2v2pg +9[sin~'(3)] pg = (5 V2 -5 +9sin7'(3)) rg

~ 6.835-1000- 9.8 ~ 6.7 x 10* N

1

Note: If you set up a typical coordinate system with the water level at y = —1, then F' = f 5 P9(— 24/9 —y2dy.
By similar triangles, w; /4 = x} /5, so w; = xl and the area of the ith strip is xl Ax. 0
The pressure on the strip is pgz;, so the hydrostatic force on the strip is pgx; - %:{:2‘ Ax T
1t
and the total force on the plate = Z pgx; - 7 Az. The total force l
i—=1
4m >
X
. 5 5
F=lm 2 Z pga’ - dat Aw = [7 pga - swde = $pg[5a°] ) = $pg - 152 = 15pg

~ 130.1000-9.8 ~ 3.3 x 10° N
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33. Set up a vertical x-axis as shown. Then the area of the ith rectangular strip is 2m 1o
2 o wi V3 —1a] 2
2 — — z; | Ax. |By similar triangles, — = ——,sow; = 2 — — x]. 1 xF
( V3 ) [ g Fe \/§ 3 ] 2m 2m
The pressure on the strip is pgx;, so the hydrostatic force on the strip is
NG
2 n 2
x; [ 2 — — x] | Az and the hydrostatic force on the plate ~ i (2 — —ux] | Ax. ;
rg ( 7 ) y p 2.9 ( 7 > .
The total force
2 V3 2 V3 2
F = lim Zpg:c (2——x2‘>Am=/ pgm(Z——x)dx:pg/ <2x——x)dx
n—eoy V3 0 V3 0 V3
2 \/5
2 3 3
= ¢ — ——== = 3—-2)—0]=pg~1000-9.8=9.8 x 10° N
pg[ Wi ]0 pg((3—2) = 0] = pg
34. Set up a vertical x-axis as shown. Then the area of the ith rectangular strip is 4m 1o
* . . Wj 4 — x: * . +1
(4 — x7) Az. |By similar triangles, ST g osowi= 4 — x5.| The ith 1}
2m T2
rectangular strip is (z; — 1) m below the surface level of the water, so the pressure on the
strip is pg(z; — 1). The hydrostatic force on the strip is pg(z; — 1)(4 — x; ) Az and the v T4
X
hydrostatic force on the plate = > pg(z; — 1)(4 — x;) Az. The total force
i=1
F= lim Y pg(zi —1)(4 —x}) Az = ff pg(x —1)(4 — x) dx = pg ff(—IQ +5x —4)dx
2
= pal4a® 40— 4]} = pal (-3 +10-8) - (4 +3 - )]
=Ipg~I-1000-9.8~1.14x10*N
Note: 1f you let the water level correspond to x = 0, then F' = fol pgx(3 — z) du.
35. Set up coordinate axes as shown in the figure. The length of the #th strip is Y
7
2./25 — (y7)? and its area is 21/25 — (y;)? Ay. The pressure on this strip is y 25— (5%
i| — i
approximately dd; = 62.5(7 — y;') and so the force on the strip is approximately / 0 >_<
4 1 N A
62.5(7 — yi)2 /25 — (y;)? Ay. The total force / " \ Y
Yi
0 X

F= lim 26257 Yi)24/25 — (y Ay—125f07 Y) /25 —y2dy

TLHOO

=125 {[5 7/ -7 dy — [y /25— Py} = 125{7f0 V2 =y dy - [~} 25—y2)3/2]2}

=125{7(47-5%) + 1(0—125)} = 125(1% — 1) ~ 11,972~ 1.2 x 10* Ib



564 [J CHAPTER6 APPLICATIONS OF INTEGRATION

36. Set up coordinate axes as shown in the figure. For the top half, the length

of the ith strip is 2(a/v/2 — y}) and its area is 2(a/v/2 — y;') Ay.

<
z\ﬂlm <

The pressure on this strip is approximately dd; = (a /N2 —y; ) and so the a
1* I
force on the strip is approximately 26 (a /N2 =yl )2 Ay. The total force Vig
n a 2 a/V2 a 2 a
Fi = lim 20 — — i Ay:25/ (——)dy
= (\/5 y) 0 V2 Y

31e/V2
Yy — 2
3\va 7 . 3

For the bottom half; the length is 2(a/v/2 + y;) and the total force is

a

n a 0 CL2 5 ) 0
=1 26 +yf ) —= -yl | Ay =26 - _ dy = 25[% _ 1.3
2 ng{oloZ; <\/§ Y )<\/§ y) Yy a/\/§<2 y> Y [26Ly Sy ]7&/\/5

V2a®>  V2a® V2a? 2v2a35
0 {O < 1 + B o 5 G [F> 1]
3 3
Thus, the total force F' = Fy + F» = 3\/za 0 = \/i; 6.
37. By similar triangles 8w = w; = 2a; The area of the ¢th *
' 43 VB 'NE) i
rectangular strip is 2\:/% Az and the pressure on it is pg (4 /3 — z7). o
43 43 4/3 0
2z 2pg 2
F:/ pg(4\/§—x)—dx:8pg/ rdr — —= x” dx
0 \/§ 0 \/§ 0
V3 2pg  314V3 2pg
= dpg[2*]2V° - 2L (4 = 192pg — L 64 -3/3 = 192pg — 128pg = 64
ZdEa My A e pg — 128pg = 64pg
~ 64(840)(9.8) ~ 5.27 x 10° N
38. The area of the ith rectangular strip is 2 /2y Ay and the pressure y—12
onitisdd; = 6(8 —y;).
8 8 y=27x
F=[68-y)2v2ydy=42-2-v2 [[(8 —y)y'/* dy gasoline \ y—8 ’
level
8
=842 [F(8y"? — y*/%) dy = 842 [8 2y %ys/z] -
0 i
—84V/2[8-2-16v2— 2-1282] AL
Ay{ 7
=84v2-256v2 (3 — %) =43,008- % =5734.41b Vi
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39. (a) The area of a strip is 20 Az and the pressure on it is §z;. 40 ft
F = [?6220dz = 205[$2?]} = 206 - 3 = 906 20 ft 9 ft
= 90(62.5) = 5625 1b ~ 5.63 x 10° Ib 3t

9_

(b) F = [} 6220 dz = 205[42%], = 200 - & = 8105 = 810(62.5) = 50,625 Ib ~ 5.06 x 10* Ib.

(c) For the first 3 ft, the length of the side is constant at 40 ft. For 3 < x < 9, we can use similar triangles to find the length a:

a 9—=x 9—zx
0= 6 = a=40- 5

2oL e = 40832} + 26 [ (92 — 2?) do = 1805 + 26[$a? — 447

F = [ 5240 dx + [ 5(40)

= 1806 + 220 (32 — 243) — (5 —9)] = 1806 + 6005 = 7808 = 780(62.5) = 48,750 Ib ~ 4.88 x 10" Ib

(d) For any right triangle with hypotenuse on the bottom, 0 -

. Az 3

sin = —— = 40
hypotenuse 7

/402 2/ -+

hypotenuse = Az cscf = Ax 406+ 6 = 4;09 Azx. ! 6

/ Ax
9 /409 1 /100 ) STL..279 Axcscd = (@E\ }

= 1.10/4096(81 — 9) ~ 303,356 Ib ~ 3.03 x 10° Ib

40. F = f02 pg(10 — 2)2/4 — 22 dw 2mx
= 20pg f02 V4 —z2dx — pg f02 V4 — 222z dx

= 20pgim(2%) — pg f04 ul’? du [u=4—22 du=—2zdz]

4
= 20mpg — %pg [u3/2]0 = 20mpg — 1—£pg = pg(207r - %)

= (1000)(9.8) (20w — ¢) ~ 5.63 x 10° N

M. F = [ pgz - w(x) dz, where w(z) is the width of the plate at depth z. Since n = 6, Az = 22 = 1 and

F%S@
=pg- L2 -w(2) +4-2.5 - w(2.5) +2-3-w(3) +4-3.5 - w(3.5) + 2-4-w(4) +4-4.5 w(4.5) +5 - w(5)]
=1pg(2-0+10-08+6-1.7+14-24+8-2.9+18-3.3+5-3.6)
= £(1000)(9.8)(152.4) ~ 2.5 x 10> N

=
(=2}

—
=

42. M = mqz1 + maxs + mazs = 25(—2) + 20(3) 4+ 10(7) = 80; T = M/(m1 + ma +ms) = 82 =

3
43. m=> m;=6+5+10=21.
i=1

M, = i m; yi = 6(5) + 5(—2) +10(—1) = 10; M, = i m; x; = 6(1) +5(3) +10(—2) = 1.

i=1 i=1

10 .
= —, so the center of mass of the system is (%, —0).

Y — Mz 1
m 21 m 21 21
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44,

45.

46.

47.

]\4z = i m; Yi = 6(—2) + 5(4) + 1(—7) + 4(—1) =

i=1 i=1

4
andm = > m; =16,80T = — = — =
i=1 m

16

Since the region in the figure is symmetric about the y-axis, we know
that T = 0. The region is “bottom-heavy,” so we know thaty < 2,
and we might guess that y = 1.5.

A= [

“e-y=%

:Af

4 — o2? d:L‘—QfO 2)dm:2[4x—%$3]§

) dx = 0since f(x) = x(4 — 2?) is an odd

; the center of mass is (7,7y) =

-3, M, = 243 m; x; = 6(1) +5(3) + 1(—3) + 4(6) =

— 32

42,

function (or since the region is symmetric about the y-axis).

:Afzz

— (2%
0.3)

The region in the figure is “left-heavy” and “bottom-heavy,” so we know = < 1

da;—
%)=3<1—%+%):3<%>=%

Thus, the centroid is (Z,7) =

and y < 1.5, and we might guess thatT = 0.7 andy = 1.2.

3x+2y=6 & 2uy=6-3z & y=3-3ix

A= [ (38— 2z)de = [3z—22%]) =6-3=3.

T=%fy o3 3u)dr =3 [) (3v— §a) dv = §[§a° — 32°];
- 6-1 =%

Tk Uy HB 30 dr =3 57 (0 90+ §%) do = For — $a? + 3o
1.

Thus, the centroid is (Z,7) = (

wirn

The region in the figure is “right-heavy” and “bottom-heavy,” so we know
T > 0.5andy < 1, and we might guess that T = 0.6 and 7y = 0.9.

fedx— e’lp=e—1.

L[ze” — e’“‘]é [by parts]

e —

= _ 1 1 x .
T =5 [, ve"dr =

— 1 1 z\2 17, 2z]1 2 e4+1
Yy==a 0%(6) daczei1~z[e ]0_4(e1 1)(6 1): Z
Thus, the centroid is (7,7) = (17, <52 ) ~ (0.58,0.98).

%~2f02(16—8x2 +at)de =3

[163: -

:1: +1x5

Jo

=118 =184 6) = 1.

|




48. The region in the figure is “left-heavy” and “bottom-heavy,” so we know Y
T < 1.5andy < 0.5, and we might guess thatz = 1.4 andy = 0.4.
A:ff%daz:[lnx]l:lnlf:i 121: Laz=1@pl=1=1. 1
_ 1 2 1/,1\2 1 2 -2 1 112
7=x)i3(3) dv=gz [{ 2 dv = 53z [-2]]

= 21112(_% + 1) = T::ﬂ'

SECTION 6.6 APPLICATIONS TO PHYSICS AND ENGINEERING U

Thus, the centroid is (Z,7) = (5, 103 ) ~ (1.44,0.36).

49. The

f:

50. By symmetry about the line y = x, we expect that T =7. A = 17r?,som = pA = 2A = 7.

line has equationy = 3z. A = 1(4)(3) =6,s0m = pA = 10(6) = 60.
M. =p [y 3(32)" de =10 [ a® do = §[32°]; = (%) = 60
My = p [y x(3z) de = ['a? de = $[32°] = (%) = 160

=55 — 34y =—= =5 =1 Thus, the centroid is (z,7) = (§,1).

2

M, =p [y 3(Vr?—a? )2d:v =23 [10?—2*)de = [Pz — %xﬂg =272
2 r?
My =p [ zvVr?—a?de= [ (r* - )Y 2x dr = N u?du [u=7r%—2% = [%us/ﬂ = 2%
0
_ 1 2 _ 1 2 Ce 4 4
T = EM@, = m(%r?’) ==r, Y= EM,C = m(%rg’) = o=r. Thus, the centroid is (Z,y) = (3—7rr, 3—7Tr)
51. (a) ¥ C,.(f,., Lf®) + g(fi)]> Suppose the region lies between two curves y = f(x) and y = g(x)
y = f(x) where f(z) > g(x), as illustrated in the figure. Use n subintervals
N\
determined by points z; witha = o < 21 < --- < x,, = band
0 choose x; = T; to be the midpoint of the ith subinterval; that is,
y=g\
0 6’1 ﬁ b > T = %(-’L’i—l + ;). Then the centroid of the ith approximating

rectangle R; is its center C; = (Ti, 3 [f (T:) + g(Ti)]).
Its areais [f(Z;) — g(T:)] Az, so its mass is p[f (T;) — g(T:)] Aw.
Thus, My(R:) = p[f (%) — 9(@:)] Az - Ti = pTi[f(T:) — g(Ti)] Az and

M.(R:) = plf (T:) — 9(@)) Az - 5[f(@:) + 9(@)] = p- 5 {[f(@)]° — [9(T:)]” } Az. Summing over i and taking

the limit as n — oo, we get M, = lim i T f(Ti) — g(Ts)] Ax = pfabx[f(a:) — g(x)] dx and

n—oo ;1

M, = lim 3 p- L [f(@) - 9@)?] Ax = p [ 2{[f(@)* — [9(@)]*} da. Thus,

n—oo ;1

7= % _ % _ %/ of(w) — g(2)] dv and g = ]\i = % = %/ @) = g(«)]”} da.

567
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(b) Y The region is sketched in the figure. We take f(z) = =, g(v) = 2, a = 0,
VTN Ly and b = 1 in the formulas in part (a). First we note that the area of the
12
&/ —3) regionisA:fol(x—a:Q) dx = [%xQ—%m?’]é: z.
\\ "~y = x?
0 X

Therefore, T = 3 [, z[f(z) — g(x)] dx = Tle fol z(r —2%)de = Gfol(z2 — %) dx = 6[32° — lxﬂl =1

and @:% 01%{[]”(:17)]2—[9(95) } = 1/6f (ac -z )dac—?)[l:r —115]1—%

3 5
The centroid is (5, 2).

52. (a) Let0 <z < 1. Ifn < m, then ™ > x™; that is, raising x to a larger

power produces a smaller number.

(b) Using Formulas 9 and the fact that the area of R is
1 1 —
A= fo ") dx — = m—n

T htl m+1—(n+1)(m+1),weget 0 L
jz(n_'_l—m—i_lf dm:wf(n+l_xm+l)dx
_(n+1)(m+1)[ 1 ]_(n—i—l)(m—i—l)
N m-—n n+2 m+2| (n+2)(m+2)
and
7= ntDm+1) +ﬂ?(_n:,b+ D Jo 3 [@")? = (@™)?] do = ntl)mtl) ;(nz m+ 1) [y (%" — 2*™) dz
(n—i—l)(m—i—l)[ 1 ] (n+1)(m+1)
 2(m—n) 2n+1 2m+1] (2n+1)2m+1)
(c) If we take n = 3 and m = 4, then Y

—
s
t

@) = (L2 45 (220
W=\5%679) 363

which lies outside % since (%)3 = = < 23. This is the simplest of many

possibilities. 0 1 x

DISCOVERY PROJECT Complementary Coffee Cups

1. Cup A has volume V4 = |, Oh (y)]? dy and cup B has volume
Vs = [y mlk — () dy = foh m{k? - 2krf( )+ [F )"} dy
= [7k® } — 27k fo y) dy + fo (Y)]? dy = 7k*h — 21k Ay + Va
Thus, Vi =V & wk(kh—241)=0 < k= 2(A1/h); that is, k is twice the average value of f on the

interval [0, h].

2. FromProblem 1,Va =V & kh =241 & A1 +A;=24; & Ay=A;.
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3. We’ll use a cup that is h = 8 cm high with a diameter of 6 cm on the top and the Y
h=28
bottom and symmetrically bulging to a diameter of 8 cm in the middle (all inside
dimensions).
A, 144
For an equation, we’ll use a parabola with a vertex at (4, 4); that is,
= a(y — 4)* + 4. To find a, use the point (3, 0): :
0 3 = 2 X
p— 2 p— —_ E
3=a(0-4)°+4 = —-1=16a = a= —+. Tofind k, we'll use the als Q_3>

relationship in Problem 1, so we need A1
=l 547 +4]dy = [*, (~f5u’ +4) du [u=y—4

=2 [ (—Lu? +4) du = 2[~ Fu® + 4u];, = 2(—4 +16) = .

[ShA

Thus, k = 2(A1 /h) = 2(&8/3) — 2

So with b = 8 and curve 2 = — - (y — 4)® + 4, we have
Va=Jom[~flu =47 +4" dy=n [2, (~f5u* +4) du [u=y—4] =2 [ (Fgu' - Ju’ +16) du
=27r[1280u5——u +16u} —27r(é—2+64):27r(ﬁ)=%7r

This is approximately 340 cm?® or 11.5 fl. oz. And with k = 22, we know from Problem 1 that cup B holds the same amount.

6.7 Applications to Economics and Biology

1. By the Net Change Theorem, C'(2000) — C'(0) = [*° C'(z)dz =

C(2000) = 20,000 + [7°°°(5 — 0.008z + 0.0000092%) dz = 20,000 + [52 — 0.004z? + 0.0000032%] ;"
= 20,000 -+ 10,000 — 0.004(4,000,000) -+ 0.000003(8,000,000,000) = 30,000 — 16,000 + 24,000
= $38,000

2. By the Net Change Theorem, R(5000) — R(1000) = 15000000 R'(z)dz =

5000

R(5000) = 12,400 + [57"V(12 — 0.0004z) dz = 12,400 + [12z — 0.00022%]

1000

= 12,400 + (60,000 — 5,000) — (12,000 — 200) = $55,600
3. If the production level is raised from 1200 units to 1600 units, then the increase in cost is

C(1600) — C(1200) = [0 C"(z) dx = [*°%°(74 + 1.1z — 0.0022° + 0.000042) dx

1200 1200

1600

= [74x 4 0.552” — 2324% +0.00001z"] |,

= 64,331,733.33 — 20,464,800 = $43,866,933.33

4. Consumer surplus = 300 [p(x) — p(300)] dx P

20 /p=20—0.05x

= [2%°120 - 0.05z — (5)] dz

300 consumer surplus

= [7°(15 — 0.052) dz = [152 — 0.02527]

= 4500 — 2250 = $2250 5 \
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450
- ik — - p
p(z) =10 = x+8_10 = z+8=45 = z=3T. ol
501
3 37 450 d 40 consumer
C lus = —10]da = —1 T
onsumer surplus ; [p(z) — 10] dz /0 (m ~ 8 0) x ol surplus
— [4501n ( + 8) — 102]" = (450In45 — 370) — 450In 8 ol
_ 45 ~ ;
=450 hl(@) —370 = $40725 0 10 20 30 40 x
. ps(x) =3+0.012>. P =ps(10)=3+1=4. p(x)
4 ~
Producer surplus = [ [P — ps(x)]dz = [, [4 —3 — 0.012”] dx 3 producer
4710 21 surplus
= [z — %Ms"] " ~ 10 — 3.33 = $6.67 11
o 2 4 6 8 100

. P=ps(z) = 400=200+0.22*% = 200=0.2¢%% = 1000=2%? = z=1000%3=100.

Producer surplus = fowo [P — ps(z)] dz = 0100[400 — (200 + 0.22%/2)] dx 100 <200 1 3/2) dx

100
[200:1; z®/ 2} = 20,000 — 8,000 = $12,000
0
. p =50 — 5w and p = 20 + {5 intersect at p = 40 and = = 200. P ES?SKITM
demand
200 21200 301
Consumer surplus = (50 — 352 — 40) do = [10z — g52*] = = $1000 0
30 (X, P)
Producer surplus = [7%° (40 — 20 — +2) do = [202 — & 2? }200 = $2000 20Fsupply  producer
104 surplus
o] so 150 250 «x

800,000¢ ~2/5000
g P g 1 — ~ 2 . 4. 40
p(z) % 1 20,000 6 = x=ux1~3727.0

consumer surplus

Consumer surplus = ["* [p(x) — 16] dz ~ $37,753
t (=3727 16)J
0 ’ * ! 4000
The demand function is linear with slope =2 = — == and p(400) = 7.5, so an equation is p — 7.5 = — == (x — 400) or
p= —7—10:5 + = 185 . A selling price of $6 implies that 6 = —%x + % = %x = % — % = % = 1z = 505.
Consumer surplus = [ (—z + 18 — 6) dz = [~ 2522 + 1% }505 ~ $1821.61.

8
F(8) = J(4) = [ F'(Wydt = [{VEdt = [26?] = 2(16v/2 - 8) ~ $9.75 million
4
The total revenue R obtained in the first four years is
R= [} f(t)dt = [}9000 T+ 2t dt = [ 9000u™/? (3 du)  [u=1+2tdu=24dl]

- 4500[2 3/2] = 3000(27 — 1) = $78,000
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b —k+1 b A
N = A Fde = alZ _ plF _ giky
/a v [—k n 1} T 1ok ( @)
Similarl b Ax'Fdr = A i S (b*7F —a®F)
> /. “ 2Tk, T2k '

A/ = WIE o) _ (1 - B - 0>
AT R =0 ~ 2= REF —a )

b
Thus,fz%/a Azt F dy =

5| = [22000]7 + %

10e0-8¢ ? 879
i 2 [,

9
n(9) —n(5) = / (2200 + 10e°%") dt = [22001% +
5
=2200(9 — 5) +12.5(e"? — e*) ~ 24,860

7PR*  7(4000)(0.008)"

F= = ~1.19 x 10~ cm®
8nl 8(0.027)(2) 9> 1077 /s
If the flux remains constant, then mPo Ry = mPR = PyR}=PR* = L _ (B ’
’ snl 8yl 0ro = P, \R)-
R=2R L_ Ro \' P = Py(%)* ~ 3.1605P Py; that is, the blood i han tripled
=3R0 = B~ \2r = = o(g) ~ 3.1605Fy > 3Fy; that is, the blood pressure is more than tripled.
4
From (3), F = TL = i, where
Jo c@)dt 201
10 1 10 int G
_ —0.6t _ —0.6t Integrating [ 1 —6
I—/O te dt = [ 0.6 (0.6t —1)e ]0 [bypam] = 5as(=7e " +1)
6(0.36) 0.108 .
Thus, F = 3001 — 70 e 0.1099 L/s or 6.594 L /min.
As in Example 2, we will estimate the cardiac output using Simpson’s Rule with At = (20 — 0)/10 = 2.

[2c(t)dt ~

0 [c(0) + 4¢(2) + 2¢(4) + 4¢(6) + 2¢(8) + 4¢(10) + 2¢(12) + 4¢(14) + 2¢(16) + 4¢(18) + ¢(20)]

0+ 4(2.4) + 2(5.1) + 4(7.8) + 2(7.6) + 4(5.4) + 2(3.9) + 4(2.3) + 2(1.6) + 4(0.7) + 0]

= 2(110.8) ~ 73.87 mg-s/L

B

8
Therefore, FF ~ —— = —— ~ 0.1 L 1498 L /min.
erefore, 387 — 7387 0.1083 L/s or 6.498 L /min

As in Example 2, we will estimate the cardiac output using Simpson’s Rule with At = (16 — 0)/8 = 2.

[Ce(t)dt ~

0 [c(0) 4 4¢(2) 4 2¢(4) 4 4¢(6) + 2¢(8) + 4¢(10) + 2¢(12) + 4e(14) + ¢(16)]

[ V) Wl

~ 2[0 4 4(6.1) + 2(7.4) + 4(6.7) + 2(5.4) + 4(4.1) + 2(3.0) + 4(2.1) + 1.5]

win w

(109.1) = 72.73 mg- s/L

Therefore, F' =~ i_ = L_ ~ 0.0962 L/s or 5.77 L /min.
7273 72.73
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6.8 Probability

1. (a) J. 400000000 f(x) dx is the probability that a randomly chosen tire will have a lifetime between 30,000 and 40,000 miles.

(b) f;;ooo f(z) dz is the probability that a randomly chosen tire will have a lifetime of at least 25,000 miles.

2. (a) The probability that you drive to school in less than 15 minutes is |, 015 f@)dt.
(b) The probability that it takes you more than half an hour to get to school is | 30(;3 f)dt.

3. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(x) > 0 for all z,

and(Z)ffooof( )dx = 1. For 0 < z < 4, we have f(x x+/16 — 22 > 0,s0 f(z) > 0 for all . Also,

4
o f(x)de = f04 G%x V16 — a2dx = —1—28 o (16 2?)V?(—2z) dx = —1—38 [%(16 — x2)3/2}

:—6—14[(16—:5 )3/2}0 (0 - 64) =

Therefore, f is a probability density function.

b) P(X <2)= [ flx)de = [> ZzvI6—22de = — 335 [7(16 — 2?)"/?(—22) dx

= s [3006 -] = =g [(16 - 22)7] = —gr027 - 267)

=2 (64-12V12) = £ (64— 24V/3) =1 — 2/3 ~ 0.350481

4. (a) Since f(x) = xe™® > 0ifz > 0and f(x) = 0ifz < 0, it follows that f(z) > 0 for all z. Also,

ffooo f(x)dx = fooo xe dx = tliglo fot xe T dx % [or by parts] tILIEO [(71’ — 1)6790]8

lim [(—t — 1)e~" +1] =1 - lim LI I R TR S

t—o0 t—oo et t— o0 et

Thus, f is a probability density function.
b)P(1<X<2)= ff ve Tdr = [(—x — 1)6_1]3 = -3¢ 242 ' =2/e—3/e?* [~ 0.33]

5. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(z) > 0 for all z,

and (2) [*°_ f(z)dx =1.1f ¢ > 0, then f(z) > 0, so condition (1) is satisfied. For condition (2), we see that

oo oo c
[mf(x)dx—[m 122 dx and

o0 C . t C . _1 t . 1 i
———dx = lim ——dx =c lim [tan x] —=c¢ lim tan” "t = c(—)
0 1+ 2 t—oo Jq 1+ 2 t—o0 0 t— oo 2

0 [e9)
Similarly, / ?szdm:c(g), ) / 1+C 2dm—20(2) = cm.

Since e must equal 1, we must have ¢ = 1/7 so that f is a probability density function.

Yoiyr 2 (11 2 L1 2w 1
bP(-l1<X<1l) = dr = = dr = Z[tan™ :_<__()):_
b P(-1<X<1) /_11+x2 T 7T/0 o 7T[an x]o —(3 5
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6. (a) For 0 < z < 1, we have f(z) = ka?(1 — z), which is nonnegative if and only if & > 0. Also,

2 (@) da = fol kx*(1 — z)dw = kfol(x2 — %) de = k[32® — ix‘l]; =k/12.Now k/12=1 & k=12

3
Therefore, f is a probability density function if and only if £ = 12.
(b) Let k = 12.
P(X>3)= [, f(z)dz = f11/2 1222(1 — z) de = f1/2(1233 —122%) dz = [42® — 32,

—-n -G -1- % -

16

1/2

(¢) The mean
p= [ axf(x)de= fol x-122%(1 — x) dx = 12 fol(x3 — ") dw = 12[32*
7. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(z) > 0 for all z,
and (2) [*°_ f(x)dx = 1. Since f(z) = 0 or f(z) = 0.1, condition (1) is satisfied. For condition (2), we see that
f - x)dx = 10 0.1dx = [1—1033] (1)0 = 1. Thus, f(x) is a probability density function for the spinner’s values.

(b) Since all the numbers between 0 and 10 are equally likely to be selected, we expect the mean to be halfway between the

endpoints of the interval; that is, x = 5.

p= [ xf(x)de= 10 z(0.1)dz = [2—109:2];0 =2 =5, as expected.
8. (a) As in the preceding exercise, (1) f(z) > Oand (2) [*°_ f(z)dz = [,° f(z)dz = £(10)(0.2) [area of a triangle] = 1.

So f(x) is a probability density function.

(b) () P(X <3) fo x)dx = %(3)(0.1) = 2—30 =0.15
(i1) We first compute P(X > 8) and then subtract that value and our answer in (i) from 1 (the total probability).
P(X >8) = [q f( )dac— (2 )(01):21—010 SoP(3<X <8 =1-0.15—-0.10 =0.75.

(c) We find equations of the lines from (0, 0) to (6, 0.2) and from (6, 0.2) to (10, 0), and find that

= if0<z<6
fl@)={ —552+5 f6<z<10
0 otherwise

n= 2 wf @) de = [7 2 (35) o+ [§0a(—gpr + 3) do = [50®]g + [g50® + o

= B0 (-4 20) (201 2) 20 =53

]10

9. We need to find m so that [°° f(t)dt =3 = lim [ le"/Pdt=1% = lim [%(—5)67”5]1 =1 =

T— 00 m

1
2
(-1)(0—e™P) =L = emP=1 = —m/s5=Inl = m=-5Ini=>5In2~ 347 min.

@ ) 0 if t<0
10. (a) 0 = 1000 = t) =
101006—:&/1000 if t > 0

200
() P(0 < X < 200) = [ ge™t/10% gt = [—e1/100] T — —e71/5 41 % 0.181
0
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00 CHAPTER6 APPLICATIONS OF INTEGRATION
(i) P(X > 800) = [, moge /"% dt = lim [—e™/10%)" =04 ¢4/~ 0.449
T—0 800
(b) Weneed to find m so that [° f(H)dt =3 = lim [ gpe™/ " dt =1 = lim e/ =1 o

04+e ™10 =1 = _—m/1000=Ini = m=-1000In1 =10001n2 ~ 693.1 h.

We use an exponential density function with ;1 = 2.5 min.

&T— 00 4 : xTr— 00

(@) P(X >4) = [Z f(t)dt = lim [" e /2P dt = lim [fe*t/“r — 04 e /25 ~0.202
4

2
(0) P(O< X <2) = [2 f(t)dt = [—e—t/?ﬂ = —e~2/25 11~ 0.551
0

(c) We need to find a value a so that P(X > a) = 0.02, or, equivalently, P(0 < X < a) =0.98 <
[eft)dt =098 < [—e*f/“r —098 & —e 9412008 o e VY25=002 o
0

—a/25=1n0.02 < a=-25In 5—10 = 2.5In50 ~ 9.78 min ~ 10 min. The ad should say that if you aren’t served
within 10 minutes, you get a free hamburger.
. [EE | (z — 69)>
(a) With u = 69 and o = 2.8, we have P(65 < X < 73) = /65 m exp (_W) dr ~ 0.847
(using a calculator or computer to estimate the integral).
(b) P(X > 6 feet) = P(X > 72inches) =1 — P(0 < X < 72) &~ 1 — 0.858 = 0.142, so 14.2% of the adult male

population is more than 6 feet tall.

P(X : 1 (x — 9.4)2> . . i _ . .
= 10) = ————— exp| ————=5— | dz. To avoid the improper integral we approximate it by the integral from
(X >10) /10 4.2~/21 p( 2.4.22 Prop gr pp y g

100 2
1 (x —9.4)

10 to 100. Thus, P(X > 10) ~ — exp|-—— L
(X = 10) /10 4.24/27 p( 2-4.22

the integral), so about 44 percent of the households throw out at least 10 1b of paper a week.

> dx = 0.443 (using a calculator or computer to estimate

Note: We can’t evaluate 1 — P(0 < X < 10) for this problem since a significant amount of area lies to the left of X = 0.

480 2
1 (z — 500) . .
a) P(0 < X <480) = ————exp| ———————=— | dx =~ 0.0478 (using a calculator or computer to estimate the
@ PO<X< ) /0 1227 p( 2-122 ) (using P

integral), so there is about a 4.78% chance that a particular box contains less than 480 g of cereal.

(b) We need to find u so that P(0 < X < 500) = 0.05. Using our calculator or computer to find P(0 < X < 500) for
various values of y, we find that if 4 = 519.73, P = 0.05007; and if ;. = 519.74, P = 0.04998. So a good target weight
is at least 519.74 g.

o q (z —112)? : -
(a) P(0 < X <100) = / exp(——2> dx =~ 0.0668 (using a calculator or computer to estimate the
0 8 \/ﬁ 2-8

integral), so there is about a 6.68% chance that a randomly chosen vehicle is traveling at a legal speed.

> 1 (z — 112)?
b) P(X > 125) = ——exp| —(—————
(b) P(X > 125) /1258 = p( -

125

to estimate either || 132050 f(x)dzorl— [

> dr = / f(x) dzx. In this case, we could use a calculator or computer
125

f(x) dx. Both are approximately 0.0521, so about 5.21% of the motorists are

targeted.
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1 (o2 /(202 1 )2 /(202 —2(2 — ) -1 o 2/(202
— = e (e=w)7/(207) / — = o (@=w)7/(207) ) _ (=p)*/(207) (. _ =
16 flz) = o2 ¢ fi(@) = o2 ¢ 202  03.2r c (@—=n)
-1 N2 (02 N2 2y —2(x — p)
() — (x—p)*/(20%) _ (z—p)?/(20%) Z2\> = F)
f (l‘) - o3 \/% |:€ 1 + (:L‘ M)e 20.2

e (@=m)?/(20%) [(z — p)? — 0]

7l @-w2eed) [1 ECED)

2
1
o342 o2 ] 052
ffx)<0 = (@-—w?-0><0 = |z—pu/<o = —o<zr—p<o = pu—o<z<u+oandsimilarly,
() >0 = xz<p—ocorxz>p+o. Thus, f changes concavity and has inflection points at x = p + o.

pn+20 1

_os ON2T

17. P(u—?aﬁXﬁu—i—?U)z/
m

2 2
/ L o %2ary = —— [ e /24t ~ 0.9545.
_o 02T V2 J 2

2
_ o — 1 .
exp (—%) dx. Substituting t = z > K and dt = p dx gives us

0 if <0
18. Let f(x) = ) where ¢ = 1/p. By using parts, tables, or a CAS, we find that
ce”* ifx>0

(1): [ze® dz = (e /b*)(bx — 1)
(2): [2%e" dx = (e /b%)(b*2?® — 2bx + 2)
Now o= [ (x—p)?flx)de = [°_(x—p)?f(x)de+ [ (@ — p)f(z) de
=0+ tlirlgocfg(x —p)ie “dr=c- tlirgo fot (2%e™ " — 2zpe”*® + p’e” ") du
Next we use (2) and (1) with b = —c to get

—CZx —CIT t

S (—ex — 1) + 25

. 6—8:1:
o =c lim [_c—3(02x2 + 2cx +2) — 2

t—oo C —C

Using 1’Hospital’s Rule several times, along with the fact that © = 1/¢, we get

o (L2211 AN A\ _1 L1
o ¢ ¢ 2 2 —c T\ ) 2 _c_u

6 Review
CONCEPT CHECK

1. (a) See Section 6.1, Figure 2 and Equations 6.1.1 and 6.1.2.

(b) Instead of using “top minus bottom” and integrating from left to right, we use “right minus left” and integrate from bottom

to top. See Figures 9 and 10 in Section 6.1.
2. The numerical value of the area represents the number of meters by which Sue is ahead of Kathy after 1 minute.

3. (a) See the discussion in Section 6.2, near Figures 2 and 3, ending in the Definition of Volume.
(b) See the discussion between Examples 5 and 6 in Section 6.2. If the cross-section is a disk, find the radius in terms of x or y
and use A = 77(radius)2. If the cross-section is a washer, find the inner radius 7, and outer radius 7o, and use

A= W(rgm) — W(rizn).

4. (a) V = 2nrhAr=(circumference)(height)(thickness)



